Using Python to Solve the Navier-Stokes Equations - Applications in the Preconditioned Iterative Methods
نویسندگان
چکیده
This article describes a new numerical solver for the Navier-Stokes equations. The proposed solver is written in Python which is a newly developed language. The Python packages are built to solve the Navier-Stokes equations with existing libraries. We have created discretized coefficient matrices from systems of the Navier-Stokes equations by the finite difference method. In addition we focus on the preconditioned Krylov subspace iterative methods in the linearized systems. Numerical results of performances for the Preconditioned iterative methods are demonstrated. The comparison between Python and Matlab is discussed at the end of the paper.
منابع مشابه
Preconditioned iterative methods for Navier-Stokes control problems
PDE-constrained optimization problems are a class of problems which have attracted much recent attention in scientific computing and applied science. In this paper, we discuss preconditioned iterative methods for a class of Navier-Stokes control problems, one of the main problems of this type in the field of fluid dynamics. Having detailed the Oseen-type iteration we use to solve the problems a...
متن کاملImprovements of two preconditioned AOR iterative methods for Z-matrices
In this paper, we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix. These methods can be considered as improvements of two previously presented ones in the literature. Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners.
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملEvaluation of Preconditioned Krylov Subspace Methods for Navier-stokes Equations
The purpose of this work is to compare the performance of some preconditioned iterative methods for solving the linear systems of equations, formed at each time-integration step of two-dimensional incompressible NavierStokes equations of fluid flow. The Navier-Stokes equations are discretized in an implicit and upwind control volume formulation. The iterative methods used in this paper include ...
متن کاملPreconditioned Modified Explicit Decoupled Group for the Solution of Steady State Navier-Stokes Equation
Abstract: Combining iterative schemes with suitable preconditioners may improve the rate of the convergence of the methods. However, the real difficulty lies in the construction of the correct preconditioners applied to the formulated schemes. In this paper, the Modified Explicit Decoupled Group Successive Over-Relaxation method is formulated to solve the two dimensional steady-state Navier-Sto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015